Binary Biometric Representation through Pairwise Polar Quantization

نویسندگان

  • Chun Chen
  • Raymond N. J. Veldhuis
چکیده

Binary biometric representations have great significance for data compression and template protection. In this paper, we introduce pairwise polar quantization. Furthermore, aiming to optimize the discrimination between the genuine Hamming distance (GHD) and the imposter Hamming distance (IHD), we propose two feature pairing strategies: the long-short (LS) strategy for phase quantization, as well as the long-long (LL) strategy for magnitude quantization. Experimental results for the FRGC face database and the FVC2000 fingerprint database show that phase bits provide reasonably good performance, whereas magnitude bits obtain poor performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary Biometric Representation through Pairwise Adaptive Phase Quantization

Extracting binary strings from real-valued biometric templates is a fundamental step in template compression and protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Quantization and coding is the straightforward way to extract binary representations from arbitrary real-valued biometric modalities. In this paper, we propose a pairwise adaptive p...

متن کامل

An effective biometric discretization approach to extract highly discriminative, informative, and privacy-protective binary representation

Biometric discretization derives a binary string for each user based on an ordered set of biometric features. This representative string ought to be discriminative, informative, and privacy protective when it is employed as a cryptographic key in various security applications upon error correction. However, it is commonly believed that satisfying the first and the second criteria simultaneously...

متن کامل

Deep Hashing Network for Efficient Similarity Retrieval

Due to the storage and retrieval efficiency, hashing has been widely deployed to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing, which improves the quality of hash coding by exploiting the semantic similarity on data pairs, has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first...

متن کامل

Deep Quantization Network for Efficient Image Retrieval

Hashing has been widely applied to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing improves the quality of hash coding by exploiting the semantic similarity on data pairs and has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first represented as a vector of hand-crafted or machin...

متن کامل

Biometric Quantization through Detection Rate Optimized Bit Allocation

Extracting binary strings from real-valued biometric templates is a fundamental step in many biometric template protection systems, such as fuzzy commitment, fuzzy extractor, secure sketch, and helper data systems. Previous work has been focusing on the design of optimal quantization and coding for each single feature component, yet the binary string—concatenation of all coded feature component...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009